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Linguistic Arbitrariness

Hockett and Hockett (1960)

“The word ‘salt’ is not salty nor granular; ‘dog’ is not canine;
‘whale’ is a small word for a large object; ‘microorganism’ is the
reverse.”

Gasser (2004)

”Arbitrariness becomes necessary as the number of words
increases... there are more ways to avoid ambiguity in an
arbitrary language”
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Non-Arbitrariness: Form-meaning
Systematicity

� Phonaesthemes (Otis and Sagi, 2008; Hutchins, 1999)

� Recent research suggests systematic structures (Shillcock
et al., 2001; Monaghan et al., 2014), but:

1. How strong is this systematicity?

2. To what extent is this systematicity clustered?
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Why we should use visual information
� Past research into form-meaning systematicity used textual

corpora to model meaning

� Semantic concepts have a visual component in human
language processing (Zwaan and Madden, 2005)

� Semantic models can be improved by incorporating visual
information (Bruni et al., 2014; Kiela and Bottou, 2014)
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Our task:
Gain insight into the structure of form-meaning systematicity,
using multimodal semantic models

1. Our methods for investigating systematicity and constructing
semantic models

2. Experimental setup

3. Results

4. Conclusion and Future research
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Kernel Regression

� Predictor variable: Word

� Target variable: Semantic representation
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Measuring String-Distance

� Levenshtein
edit-distance

� Optimize weighting for
differential semantic
relevance (Gutiérrez
et al., 2016)

d(si , sj) =
S∑

s=1

(Ws∗Vijs) = W T Vij

(1)
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Text-based Semantic Model

Skip-gram with Negative Sampling (Mikolov et al., 2013)

� Learn word vectors from contextual use in a large text
corpus

� Maximize corpus-probability by optimizing semantic vectors
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Image-based Semantic Model

Convolutional Neural Networks (Krizhevsky et al., 2012)

Train a network of 5 Convolutional layers, 3 max-pooling layers,
and 3 fully connected layers on image-classification

1. Provide 10 images per word as input
2. Do a forward pass and extract pre-final layer
3. Aggregate
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Multimodal Semantic Models

Scoring-Level Fusion

� Perform Kernel-Regression Separately
� Compute semantic distance as a weighted average
� Optimize weighting factor (0.75)

Multimodal Concatenation

� Normalize and concatenate semantic representations
� Optimize weights on the multimodal representations
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Multimodal Semantic Models

Neural Network Fusion

� Predict Levenshtein
distance

� Extract pre-final layer
Linguistic
Features Visual Features

Network 1

Concatenation

Edit-
Distance

Network 2 

Extraction

Visual FeaturesLinguistic
Features
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Experimental Setup

Lexicon
4479 Monomorphemes

Measuring Corpus-wide Systematicity

Mantel Permutation test for pairwise distances

Identifying Systematic Clusters

Predictability as a measure for systematicity
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Quantitative Results

Model Correl. p-value
Text-based 0.0362 < 0.001
Image-based 0.0198 0.025
Scoring-level fusion 0.0401 < 0.001
Multimodal concat 0.0351 < 0.001
Neural Network fusion 0.0175 < 0.001

Table: Correlations between unweighted Levenshtein
distance and semantic distance

Model Correl. p-value
Text-based 0.0383 < 0.001
Image-based 0.0243 0.007
Scoring-level fusion 0.0420 < 0.001
Multimodal concat 0.0376 < 0.001
Neural Network fusion 0.0266 < 0.001

Table: Correlations between weighted Levenshtein
distance and semantic distance
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Qualitative Results

Ph Systematic Words
sn- sneeze, sniff, snore, snort, snout
pe- pea, peach, pear, pearl, pebble

Table: Phonaesthemes (text-based model): 22 total

Ph Systematic Words
cr- crab, crawl, creep, crouch
si- sight, sign, silhouette, simulate

Table: Phonaesthemes (multimodal concatenation): 10
total
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Conclusion

Systematicity

Our findings corroborate the existence of form-meaning
systematicity, and its clustered nature

The importance of a Multimodal approach

Incorporating visual information can increase the level of
systematicity identified, and capture novel relations between
form and meaning
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Future Research

How systematic is our language? (and why)

� Is systematicity universal accross languages?
� Why is language systematic?

Expanding the multimodal approach

� Advanced fusion methods
� Incorporating new modalities

| Conclusion and Future Research | 16



(De Saussure,
1916)

”Everything that relates to language as a system
must be approached from this viewpoint: the
limiting of arbitrariness. This is the best possible
basis for approaching the study of language”
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Weight-optimization for Kernel Regression

Predict target variable based on local structure in predictor
variable

ŷ(xj) =

∑
i 6=j kij ∗ yj∑

i 6=j kij
, (2)

Kernel penalizing distance

k(xi , xj) = exp(−d(xi , xj)/h) (3)
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Weight-optimization for Kernel Regression

Mean squared error

L =
N∑

i=1

((yi − ŷi)
T (yi − ŷi)) (4)

Gradient

∂L
∂W

=
2
N
∗

N∑
i=1

(yi − ŷi) ∗
∑

j 6=i(yj − ŷi)
T kijvij∑

j 6=i kij
(5)
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Skip-Gram with Negative Sampling

Objective ∑
(w ,c)∈D

log
1

1 + e−vc∗vw
(6)

Avoid trivial solution
∀(w , c) ∈ D′[(w , c) 6∈ D] (7)

Final objective∑
(w ,c)∈D

log
1

1 + e−vc∗vw
+

∑
(w ,c)∈D′

log
1

1 + evc∗vw
(8)
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Convolutional Neural Network

� 5 Convolutional layers
� 3 Max Pooling layers
� 3 fully connected layers
� One Softmax layer
� ReLU
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